Study on the Stability and Numerical Error of the Four-stages Split-step Fdtd Method including Lumped Inductors

نویسندگان

  • Y.-D. Kong
  • Q.-X. Chu
  • R.-L. Li
چکیده

The stability and numerical error of the extended fourstages split-step finite-difference time-domain (SS4-FDTD) method including lumped inductors are systematically studied. In particular, three different formulations for the lumped inductor are analyzed: the explicit, the semi-implicit, and the implicit schemes. Then, the numerical stability of the extended SS4-FDTD method is analyzed by using the von Neumann method, and the results show that the proposed method is unconditionally-stable in the semi-implicit and the implicit schemes, whereas it is conditionally stable in the explicit scheme, which its stability is related to both the mesh size and the values of the element. Moreover, the analysis of the numerical error of the extended SS4-FDTD is studied, which is based on the Norton equivalent circuit. Theoretical results show that: 1) the numerical impedance is a pure imaginary for the explicit scheme; 2) the numerical equivalent circuit of the lumped inductor is an inductor in parallel with a resistor for the semi-implicit and implicit schemes. Finally, a simple microstrip circuit including a lumped inductor is simulated to demonstrate the validity of the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Efficient Unconditionally-stable Four- Stages Split-step Fdtd Methods with Low Numerical Dispersion

Two efficient unconditionally-stable four-stages splitstep (SS) finite-difference time-domain (FDTD) methods based on controlling parameters are presented, which provide low numerical dispersion. Firstly, in the first proposed method, the Maxwell’s matrix is split into four sub-matrices. Simultaneously, two controlling parameters are introduced to decrease the numerical dispersion error. Accord...

متن کامل

Numerical Dispersion and Stability of an Extended FDTD Method Applied to Negative Refractive Index Media Modeling

The analogy between the FDTD Yee cell and a transmission-line network is invoked for the derivation of a scheme that lends itself to the implementation of a negative refractive index medium. Electric and magnetic currents, incorporated in the update equations, represent series capacitors and shunt inductors, which load the implicitly present transmission line network of an FDTD grid in a way th...

متن کامل

Strongly stable multi-time stepping method with the option of controlling amplitude decay in responses

Recently, multi-time stepping methods have become very popular among scientist due to their high stability in problems with critical conditions. One important shortcoming of these methods backs to their high amount of uncontrolled amplitude decay. This study proposes a new multi-time stepping method in which the time step is split into two sub-steps. The first sub-step is solved using the well-...

متن کامل

On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative

The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...

متن کامل

An Unconditional Stable 1d-fdtd Method for Modeling Transmission Lines Based on Precise Split-step Scheme

This paper presented a novel unconditional stable FDTD (US-FDTD) algorithm for solving the transient response of uniform or nonuniform multiconductor transmission line with arbitrary coupling status. Analytical proof of unconditional stability and detailed analysis of numerical dispersion are presented. The precise split-time-step scheme has been introduced to eliminate the restriction of the C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012